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Abstract. We investigate the non-integrability of a family of Duffing-van der Pol oscillators 

i+ai(x2- 1t+x+gx3=y ($1 
by studying the analytic properties of the dynamics in complex time. We find that the 
solutions of (*) have no'woise thanalgebraic singularities at 1.. with only (r-r.)"' terms 
present in their series expansions, unlike, for example. the a = O  Duffing case, where. typi- 
cally, log([-1.) t e m  arise. Still, when integrating ( * )  around long enough contous. a 
remarkably intricate pattern of square root singularities emerges, on different sheets, which 
appean to preuenr solutions from ever returning to the original sheet. Such evidence of 
infinitely-sheeted solutions, termed the rss property, has also been observed in a number 
of Hamiltonian systems and is illustrated here on a simple example of a single, fint-order 
differential equation. We suggest that the r s s  property is a necessary condition for non- 
inlegrabiliry, i.e. non-existence of a complete set of analytic, single-valued constants of the 
motion, which would permit the complete integration of a dynamical system in terms of 
quadratures. 

1. Introduction 

It has been known for some time, mainly due to rigorous results by Ziglin and Yoshida 
[l-51, that the non-integrability (i.e. the non-existence of a complete set of analytic 
single-valued integrals) of many dynamical systems is connected with the fact that their 
solutions are, in general. infinitely sheeted ,functions 'of time in the complex domain. 
Typically, such solutions are seen to contain log(t- t.) or (I- tJA  terms with A irrational 
or complex, in their series expansions about a movable shgularity, t = I., in the complex 
(time) t-plane [ 6 , 7 ] .  

On the other hand, there also e& many examples of physically interesting systems, 
whose solutions have no worse than algebraic sinplanties in the complex domain. 
Some of these systems turn out to satisfy the so-called Weak-Painlev6 property [SI and 
hence are completely integrable, in which case one might try to transform them to 
systems which are fully PainlevC, by some non-trivial change of coordinates [9, IO]. 
What happens, however, in the case of systems with only algebraic singnlarities, for 
which no such~~transformation can be found? How does one study their (non)inte- 
grability and its connection with the analytic structure of the solutions in complex time? 

One answer to this question was recently proposed for a class of Hamiltonian 
systems of two degrees of freedom, whose solutions have only square root singularities 
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in t d  [ll, 121. It was found that, when one integrates numerically the equations of 
motion around long enough contours, an extremely complicated pattern of singularities 
emerges on different sheets, whose intricate branching apparently prevents the solutions 
from ever returning to their starting values on the original sheet. This suggests the 
existenbe of infinitely sheeted solutions, which we have called the ISS property and have 
conjectured it to be a necessary condition for non-integrability and chaotic behaviour 
in real time [5 ,8 ,  11, 121. 

In this paper, we present evidence that another physically interesting dynamical 
system, with only algebraic singularities, possesses the ISS property and is, therefore, 
strongly suspected to be non-integrable. This is a family of DnfEng-van der Pol (DW) 
oscillators described by the equation 

T C Bountis et a1 

x+ ai@- 1) + x+pXz= y cos Wt (1.1) 
where k= dx/d t  and a ,  p, y are constant parameters. Equation (1.1) may be considered 
as a model describing the propagation of voltage pulses along a neuronal axon, and 
has received a lot of attention recently by many researchers [ 13-16]. It is seen to exhibit 
a rich variety of bifurcations and chaotic phenomena in real time. Here we are interested 
in the more mathematical question of the behaviour of the solutions of (1.1) in complex 
time. 

We would like, to stress, however that, besides being of mathematical interest, our 
exploration of the solutions of a dypamical system in complex time. offers also a 
practical test for non-integrability in two important cases: 

(i) If a system looks integrable in real-time numerical experiments; and 
(ii) if a system is multi-dimensional and integrability cannot be easily decided, e.g. 

by projections of orbits on spaces of lower dimensions. 
Furthermore, as has been shown for several examples of periodically driven systems, 

it is interesting to study the density of singularities in the t-plane, which is seen to 
increase as a driving parameter is increased and the motion in real time becomes more 
chaotic [5,7, 17, 181. 

In section 2, we demonstrate first that the singularities of equation (l.l), for a #O, 
are all of square root type, i.e. the solution of (l.l), near these singularities, t=t,, is 
of the form 

m 

r=t-t* (1.2) x( t )  = r -1/2 1 anTn/2 

" - 0  

with no log z terms arising (at the order where the second free constant enters) for all 
values of p and y. We then investigate the analytic properties of the classical van der 
Pol equation (1 .l) with p = y = 0. What we find, at first, when integrating the equation 
around a contour enclosing only one pair of singularities of the original sheet, is that 
new singularities appear on other sheets, whose branching allows the solution to return 
to its initial value after a number of turns, which depends on the number of singularities 
enclosed in the contour. 

If the contour is relatively small, we thus obtain evidence of exact returns, as the 
solutions keep 'seeing' the same small number of singularities and eventually return to 
their initial values, within the accuracy of our calculations. However, as the size of the 
confow increases, a sharp transition occurs, when one more singularity pair is included 
in the contour. A remarkably intricate singularity pattern emerges then and the ISS 

property of the solutions is evident, as they fail to return to their original values even 
after more that 200 tums. 
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In section 3, we examine the cases p #O and y#O separately. For p#O and y=O 
we find, again, around one singularity pair, clear evidence of ISS as follows: For reason- 
ably small contours, the projections of singularities on the same sheet form clusters with 
complicated structure and the absolute difference of the solution from its value on the 
original sheet grows linearly, on the average, at least over the first 200 turns. However, 
for somewhat larger contours, a sharp transition occurs again to a complicated, cloud- 
like singularity pattern, with the solutions differing.significantly and chaotically from 
their starting values. 

Similar ISS phenomena are observed in the case y#O and p=O (a#O). Here, 
however, there is an additional interesting complication: due to the presence of cos mt 
terms in the expansions of the solution around a singularity the radius of convergence 
of these series decreases exponentially in the IIm(t)l direction. This leads t o ~ a  clustering 
of singularities on the same sheet, as has been observed in the past, in the analysis of 
other periodically driven oscillators [5, 7, 17, 181. Furthermore, just as was found in 
those cases, here also, the singularity pattern appears to grow denser as the value of 
y>O is increased and the motion becomes more chaotic in real time. 

In section 4, we present, for pedagogical purposes, our analysis of the solutions of 
a simple-lookmg iirst order equation 

dx 
- = x  - x 3  + Et + 6 
dt  (1.3) 

which has only square-root singularities in t 4 ,  for all values of E and 6. We find that 
all these solutions are finitely sheeted, for ~ E = O ,  which demonstrates the integrability 
of (1.3), while in the non-integrable case E # O  infinite sheeted solutions are found, in 
a similar way, as described above. 

Finally, section 5 contains a discussion of our results and some general remarks on 
the siligularity analysis of dynamical systems in complex time. 

2. Singularity analysis of the van der Pol equation 

Let us begin our analysis of the family of DVP oscillators 

x+ a i ( 2 -  1) + x  +px3= y cos W t  (2.1) 

by showing that. for a 50,  all of its solutions possess only square-root singularities in 
the complex t-plane. We will then proceed to investigate in this section the pure van 
der Pol case: P=y=O. ~ ~ ~ 

As is usually done in singularity analysis [5-S], one starts by finding all possible 
leading behaviours of the solutions, near a (movable) singularity t =  t , .  In the case of 
(2.1), there is only one such behaviour: 

(2.2) 

as z+O, for a #O. Proceeding to the determination of higher-order terms in 
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one easily finds, upon equating in (2.1) terms of order T-', z-~", r-' respectively: 

T C Bountis et a1 

a3 = arbitrary. 3P a al=O (2.4) 

This implies that the second free constant, a3 (the first one is t*) of the solution is 
compatible with a series expansion of the form (2.3) for all values of P and y. Hence 
no logarithmic terms (or any other kind of singularities) arise and the general solution 
of (2.1) near t =  t,  can be written as 

m 

x(t)=z-'" a,?'' r = t - t ,  . (2.5) 
"30  

Clearly the periodic forcing term in (2.1) gives 

y cos W ( r + f * ) =  y cos mt* (2.6) 

and will start contributing in equation (2.1) at order TO, adding a y cos ut, to the 
equation from which the coefficient as is calculated. 

Furthermore, as we have shown in [19], one can prove, using Weierstrass majorant 
method, that the series (2.5) converges in the punctured disc: 

D= {r#O, with 121 < R <  CO} 
within a finite radius of convergence R>O, which, at least numerically, is seen to extend 
to the singularity nearest to t ,  in the complex t-plane. 

So the solutions of (2.1), for a#@, are locally (i.e. near every t*) finitely branched 
and finitely sheeted. Does that mean that they are also globally finitely sheeted? 

To find out let us integrate the equation of motion (2.1) numerically in the complex 
t-plane, along simple rectangular contours enclosing more than one singularity of the 
primary Riemann sheet. This is done using the ATOMFT 2.51 (1991) algorithm, which 
is a more recent version of the original ATOMCC program developed by Chang and 
Corliss [20, 5,6]. All computations were camed out in double precision on a PC 386 
taking less than a minute of execution time for each turn around a typical contour. 

Let us set f i  = y = 0 and consider the pure van der Pol equation 

x+ a+?- 1) + x =  0 a>O. (2.7) 
As is well known, all solutions of this equation tend to a limit cycle in the x ,  i phase 
plane, whose amplitude is bounded between -2 and 2, while its velocity increases 
without bound as a increases to larger and larger values 1211. Equation (2.7) is non- 
integrable in the sense that it cannot be transformed to any of the 50 second-order 
equations discovered by Painlev.5 [5,8], whose solutions are single-valued (except for 
a number of isolated poles) in the complex t-plane. 

But in what sense are the solutions of (2.7) multivalued? Let us choose, for conveni- 
ence, initial conditions t = O ,  which place our solution near the limit cycle, i.e. 

x(O)=2.0 *(O)=O (2.8) 
and take a values of order unity, at which the period of the limit cycle oscillations is 
nearly 2n. Then the singularities of the solution, on the primary sheet, form a row of 
conjugate pairs placed along the Re taxis, at nearly n-distances between each pair, as 
shown in figure 1. 
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Figure 1. Arrangement of singularities on the primary 
(2.7), with [I= 1 and initial conditions (2.8). 

=ann sheet , S 
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tions of 

The reason for this arrangement is that the Fourier representation o f  the solution 
diverges in the IIm tl direction at all real t values where the amplitude of the oscillation 
is largest, i.e. at the maxima and minima of x(t) ,  tER, which occur at near multiples 
of K. Now let us enclose the pair of singularities nearest to the Im taxis in a rectangular 
contour C (see figure I),  which intersects the Re t axis at Q=-1.8 and whose vertices 
on the Im f axis are located at the points P and -P. 

We will now make several tums around C and compute the values of x(t), i(f), at 
P, after the Nth turn: xp(N) ,  i p ( N ) ,  respectively. In particular, we are interested in 
the values of 

A.xP(N) = IxP(N) - xp(0)l Aip(N) = I ?p(N) - i p ( 0 )  I (2.9) 

i.e. the absolute differences of x and i at P after N tums, from their values at the 
beginning of the 6?st turn. 

In table 1 we list~these differences for several values of P between I.li and 1.3i. We 
find, for these contours, evidence offntitely sheeted solutions (Fss),'retuming to their 
starting values after a number of tums N, which,equals the number of singularities 

Table 1 

Number of 
singularities in 

P N Contour C A X A N )  A M N )  

1.09i 7 6 7.8 x 1 0 ~  3.2 x io-" 
1.18i 7 6 1 .Ox10- '~  5.7x10-'3 
1.24i 7 6 ~ 7.0 x 3.6 x 1 0 ~  
1.25 7 6 1.6X10-" 1.6X10-" 

1.27i 9 8 8.5 X lo-'' 6.5 X lo-'' 
1.30i 9 8 2.7 x 10-g 2.9 x 10.' 

1.255 9 8 1.9X10-8 1.7~ lo-' 
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1.5 

1.0 

0.5 

0.0 
v 5 -0.5 

-7.0 

-1.5 

-2.0 

Figure 2. Complex time integration of (2.7). with a = 1 and initial conditions (2.8) around 
two of the primary shee! singularities of figure 1 (marked by x here). (u) The upper right 
corner of contour is at P=1.3i and no new singulanties. other than the ones shown here, 
appear. even after 200 turns around C. ( b )  The solution dfierences Ax,(N). cf, (2.9), 
showing clear evidence of FSS as they return to 0, within IO-’, after every nine turns. 

enclosed in C, plus one. Note, in figure 2(a), for the P= 1.3i case, that these singularities 
belong to different sheets (the singularities of the primary sheet are marked by x in 
the figure). 

Observe that the number of tums N, needed for the solutions to recover their original 
values at P, increases by 1 for P> 1.2525, i.e. when the singularities marked by 0 have 
been included in C. In figure 2(b) we have plotted the values of A x p ( N )  for several 
tums in the P= 1.3i case. Even though the differences of AX,@) from 0, after every 
nine tums, has increased from IO-’* to (table l), this is still,considered as evidence 
of FSS, within the accuracy of our computations. 

A dramatic change occurs in these pictures, however, when P21.33194i, which is 
the (positive) imaginary part of the singularity pair marked by in figure 2(a). Com- 
pare figures 3(a), (b) and 4(a), (6) for P= 1.33191i and P= 1.33197i, respectively. In 
figures 3(a), (b) the singularity pattem and the Axp(N)’s are practically identical with 
the corresponding ones of figures Z(a), (b). However, in figures 4(a), (b) ,  for P= 
1.331971 the situation is entirely different: a cloud of new singularities has emerged, 
whose branching does not allow the solution to return to its original value even after 
more than 200 turns. 

This evidence of ISS persists for larger values of P, as well. The cloud of singularities 
remains equally dense and the chaotic oscillations of Axp(N)  are qualitatively similar 
in every case, differing only in their detailed structure. That these pictures are not caused 
by numerical errors in seen by the fact that when the calculations are repeated for 
slightly different Ps (e.g. P= 1.332i and P= 1.333i) exactly the same singularity pattern 
and Axp(N)  oscillations are observed, even after 200 tums. 

There is, also, an interesting phenomenon of sensitivity of solutions to small changes 
in their initial conditions! When we took P= 1.5i and varied the initial conditions (2.8) 
to 

x(0)  =2.000 01 t ( 0 )  = 0 (2.10) 



2.0 

1.5 

$ 0  

0.5 

0.0 
v E 4,s 

- 1  U 
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I’ C 

2.5 

Figuw3. (a) Same as figure 2(n), with P= 1.331911, just before the singularity marked by 
I3 has been included in C. (b) Same as figure ?(b), at this P value. Note the similarity 
between these two figures. 

* . O  3 

lie( I.) N 

Figure 4. (a) Same as figures 2 6 )  and 3(a), with P= 1.33197i. i.e. just after the singulmky 
has been includtd in C. An ‘explosion’ of s i d a r i t i e s  has occurred and the figures are 

now completely different. (b) New singularities of figure 4(aA now. prevent the solution 
from recovering its initial value, even after N=200 tums. 

the A x p ( N )  oscillations started to differ significantly from the (2.8) case, after the 65th 
turn. Thus, we can say that, even though (2.7) is, by definition, not chaotic in real time 
(since if only describes planar motion), it does exhibit chaotic behaviour in complex 
time, where its non-integrability becomes apparent via the ISS property. 

3. DVP oscillators with B#O and y f O  

we now tum to the investigation of the more general case of DW oscillators (2.1) with 
P # O  and yZ0 ,  separately. Before we start, however, we should point out, that the 
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condition a # O  is very crucial for the results of this paper. Indeed, if we set a = 0, the 
singularities are of an entirely different type, determined by the px’ DuEng term of 
(2.1): Near these singularities, ~ = ( - 2 / p ) ’ ~ ~ - ’  and logr  terms appear in the series 
expansions, with well known ISS properties, which were studied in detail in earlier 
publications [7,22,23]. 

For a #O, however, the Duffing and periodic terms in (2.1) do not alter the square- 
root nature of the singularities (2.2), about which the solutions are given by series 
expansions of the form (2.5), as was shown in the previous section. 

Our main observation, in this section, is that the ISS property is also present for 
p f O  and for y =O in (2.1). To see this, let us consider first the unforced DW oscillator, 
with y=O in (2.1) 

T C Bountis et a1 

x + a+?- I )  +x+px’=  0. (3.1) 
This equation also supports l i t  cycle oscillations, which for p of order unity, are 
numerically seen to be very similar to the ones of the van der Pol case (p = 0). We may, 
therefore, start out investigations, for small p ,  using the same kind of contour C, as in 
section 2, around one singularity pair of the primary sheet, and the same initial condi- 
tions: x(0)=2.0, t(O)=O.O. 

As we see in figure 5, for p=O.25 and a= 1, when we integrate around a contour 
C containing the two singularities marked by S, s in figure S(a), new singularities 
appear on different sheets, which are grouped together in the form of clusters. In figure 
5(b), we exhibit a magnification of one of these clusters, which shows a complicated 
(possibly fractal) structure. The result of this accumulation of singularities is shown in 
figure 5(c): The solutions around C show clear evidence of ISS, as their differences from 
their starting values at P, are of order IO-’, after each turn, and grow linearly with N ,  
at least up to N=200. 

We have checked that these results are not caused by numerical errors, as follows: 
Varying the vertical length of C, we obtain, for several PaIm(S) the same pictures as 
depicted in figure 5. On the other hand, if P<Im(S), there is no such singularity 
accumulation; only two singularities appear in C and the solutions return to their 
original values, after three turns, with a n  accuracy of order IO-”. 

Finally, by increasing further the vertical length of the contour (taking P>Im(S)), 
we also find, here, a sudden transition to a ‘scatter’ of singularities, similar to the cloud- 
like patterns, observed in the van der Pol case, p = y = 0. 

Let us now consider the p = 0, y # 0 case: 

f + a i ( 2 -  I )  + x =  y cos cot. (3.2) 
We will take again a=l ,  the same initial conditions and the same contour C, as in 
section 2. Recall that with P<1.33i, we had obtained there (with y=O) evidence of 
FSS, as shown in figures 2 and 3. Identical pictures are obtained here also for small 
enough values of y,  e.g. y=O.OI. 

When y is increased, new singularities enter in the contour and a sharp threshold 
exists, again, at which an explosion of singularities occurs within the boundaries of C 
and the differences Axp(N)  start to oscillate chaotically, yielding strong evidence of ISS. 
For the contour chosen here, with P=1.325i, this transition occurs at yB0.015. 

When y is increased further, e.g. to y=O.2, ISS phenomena are seen to persist and 
become even stronger, as the Axp(N) differences oscillate further away from zero, than 
in the small y case. However, when we increased y to 0.5, FSS was observed! The reason 
for this is that, at this value of y, the crucial singularity (which ushers in the singularity 
cloud and yields ISS) has passed outside the path of our contour. When the contour is 
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1 . 5 ,  

3 

.. .. . . . . ...~ ...,.. .. Figure 5. (a) A singularity pattern of 'clusters' 
formed by the projections of singularities lying on 
different sheets of (3..1), with a = l  and p=0.25. .~ 
(b)  A ,magnification of one of these 'clusters'. 

showing clear evidence of ISS, in this case. 

(4 

( E )  Solutiondifferencesgrowalmost IinearlywithN, 
N 

appropriately enlarged to contain that singularity, ISS is recovered at large values of y. 
as before. 

We end this section, with the observation and description of a different type of 
Singularity clustering, in the complex t-plane in the y # O  case. As we have remarked 
elsewhere [ll, 121, algebraic singularities are generally nof expected to cluster on the 
same Riemann sheet. The basic reason for this is that, in the analysis of the solutions 
near a singularity, none of the clustering structures produced -by z* (1 complex or 
irrational) [6] or log z terms [22,23] can occur with rational powers of z. Indeed, none 
was observed, in all the~autonomous systems with algebraic singularities considered so 
far [ I l ,  121. 

However, even though, by themselves, algebraic singularities do not cluster, in the 
presence of a periodic forcing term, like the one in (3.2), the following can happen: 
Terms of the form 

(cos w t R i i  sin cot;) (3.3) 
enter in the coefficients of the series (2.5), as explained in section 2, cf. (2.6), where 
f * = t R + i t l .  This means that these terms will grow exponentially in the Im t direction, 

ye"'"'.=yer"', 
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due to the exp( Tot,) factor in (3.3). Hence, in this direction, the radii of convergence 
of (2.5) are expected to decrease exponentially and singularities will therefore accumu- 
late on the same sheet. 

Such accumulation was indeed observed near primary sheet singularities of the DVP 
osda tor  (2.1). Taking a=0.1, fi=O.Ol and y=O.OOl, we find near the Im t axis (and 

T C BountiS et a1 

8.5 g’Oi . *‘O 7.5 1 

6 0  5.0 
-0.10 -0.00 0.70 0.20 0 . 9  0.40 0.50 -0.70 -0,oo 0.10 0 2 0  0.40 0.40 0.20 

R&) R 4 L )  
Figure 6. (U) Singularity accumulation in the Im r > O  direction for (2.1) with a -0.1, p = 
0.01 and y=O.O01. (b) Note how the pattem of (a) ‘condenses’ when the value of y is 
increased to y =0.01. The dashed l i e  indicates the integration path followed by ATOMFT 
to ‘see’ these singdarities. 

8ufEciently far from the Ret axis) the picture shown in figure 6(a). To ‘see’ these 
singukities, we followed the path shown by the dashed line in the figure. 

According to the argument given above, besides tr ,  the value of the parameter y 
should also affect the radii of convergence of the solution near every t., though not 
,exponentiany, of come, as in the case of tl. To iind out, we increased the value of y 
ten times and pecfonned the same experiment, looking at the same singularities in this 
region of the complex r-plane. The result, shown in figure 6(b), demonstrates clearly, 
on. the same scale, that the relative distances between the singularities of figure 6(a) has 
decreased and the pattem has become denser. 

It is in this sense that we speak of the real time motion of a dynamical system being 
reflected, in some way, by the analytic properties of the solutions in complex time. 

4. A first-order equation and other examples 

In this section, we illustrate some of the phenomena discussed in the previous sections 
on the h t  order differential equation 

dr 
-=x-x3+  E t +  6. 
dt (4.1) 

Smcea rigorous theory of the results presented in this paper is sti l l  lacking, our purpose 
here is to test the validity and implications of our analysis on the simplest, non-trivial 
example imaginable. Later in this section, we will consider a more ‘realistic’ model and 
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discuss the usefulness of our methods in distinguishing between integrability and non- 
integrability in Hamiltonian systems with only algebraic singularities. 

Let us start by writing down the exact solution of equation (4.1), for E= S=O 

(4.2) xo(t)=[l +,Z(h-n 1- 112 

with initial condition xO(0)e(O, 1). This expression, when expanded about one of its 
singularities, 

in 
$1 =to+ (2k+ 1) keE (4.31 

yields a power series in T = f - t c ) ,  which involves only odd powers of TI/', i.e. 
m 

xo(t)= [1-,-*7-'/2, T - l @  CtJ"  (4.4) 
"=O 

c, being the appropriate Taylor coefficients. These are both locally and globally finitely 
sheeted (FSS), since they recover their initial values at some point P of a closed contour 
of .arbitrary size, after one or two tums only, depending on whether an odd or even 
number of singularities (4.3) are enclosed in the contour. 

What about the E=O,  S#O case? Here the situation is slightly more complicated: 
equation (4.1) can be integrated by separation of variables, to yield 

(4.5) 

where 

A =  B= c= (4 .5~)  

K behg an arbitrary constant and x1 < x2 <x3 *e roots of x - 2  + 6. Unfortunately, 
equation (4.5) cannot be inverted, in general, to give an explicit expression of x( t )  as 
a function of t .  Thus the complete sheet structure of the solutions of (4.1) cannot be 
analytically revealed, even in this simple case. 

We can, however, obtain from (4.5) explicit information about the location of the 
singdarities of ,x ( t )  in~the complex t-plane. Let us consider, for example, a value of S 
for which xI , xz , x3 (and hence also A ,  B and C) are real. Rewriting (4.5) in the form 

elyK= (x-xI)'(x- x ~ ) ~ ( x - x ~ ) '  (4.6) 

elr-K_ lX1A+B+ C= 1 

t:"= K+ 2ilz k Z .  (4.7) 

-1 -1 -1 
(X2--XI)(X3 -XI) (XI -xd(x3-  XZ) (XI -x3)(X2 - x3) 

and taking I X I  +a, near a singularity t = t ,  , we find 

since A+ B +  C=O, cf. (4 .5~) .  Thus, singularities are located at 

Givennow arealinitialconditionx(0)=xo, w i t h x l < x ~ < x o < x ~ ,  say, weobtain from 
(4.6) 

K= K, = M +  ni(2m + l )C me72 (4.8) 
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where exp(-M)=(xa-xl)R(xo-x2)B(x3-xo)c.  Combining now (4.7) and (4.8) we 
finally find a set of singnlarities 

T C Bountis et a1 

@'") = M+ ni[(zm + 1) C +  Zl] (4.9) 
which is, in general, dense on the line  MER. 

However, these singularities belong to different sheets and only a h i t e  number of 
them appears every time one integrates (4.1) (with &=O) around a specific closed path. 
Taking, for example, 6=0.05 and the rectangular contour shown in figure 7(a), which 
eventually encloses 18 such singularities, we find exact returns to the starting values at 
the point P, after N= 13 tums, with initial condition x(O)= I/$, see figure 7(b). 
Increasing 6 to 6 = 0.1 and keeping everything else the same, 24 singularities are seen 
to lie within the contour, and clear evidence of FSS is obtained after N =  19. Observe 
that, in this example, the number of the enclosed singularities and the number of turns 
needed for exact return to the original sheet are not related in the same simple way, as 
in the van der Pol case of section 2 (table 1). 

Thus (4.1) with &=O was found to havefinitely sheeted solutions in every case, a 
result which is compatible with the fact that it is an integrable (if not explicitly solvable) 
equation, cf. (4.5). This equation has also been tested by the so-called poly-Painlev6 
criterion in [SI, according to which, it may also be termed integrable, since it possesses 
a (non-dense) lattice of singularities in the complex x-plane. 

What happens now if we let &#O? First of all, the solutions near a singularity, just 
as in the E=O,  6 # 0  case, possess the series expansion 

m 
x( t )  = T-'" E' a.z"P T = t - t *  (4.10) 

n-0 

where all (even and odd) powers of T"' enter in the sum. These singularities, however, 
do not lie on a straight line, as in the & = O  case. They are found to have a much more 
complicated structure, which may be responsible for the ISS property of this case. 

Using a contour similar to that of figure 7. containing three primary sheet singularit- 
ies a rich pattern is revealed, with new singularities constantly appearing on a set of 

7.0 

6 0  

5 , O  

4 0  

3.0 

r) 2.0 
v 

E 1.0 

0,o 

-7 .0 

-2.0 

Figure 7. (a) Singularity patterns for (4.1) with &=O and 6=0.05 and an asymmetric 
contour Cwith right comers at P=5i and Q=-Zi. (b) Evidence of FSS is found for (a), 
as the solutions are seen to return to their initial values after every 13 turns. 



Figure 8. (a) Integration of (4.1) for s=O.Ol, S=O. enclosing three singularities of the 
primary sheet. New singularities are seen to constantlpappear yielding (6) IS evidence, as 
the solutions fail io retum to their starting values, even &er 200 tum.  

nested parabolic curves shown in figure 8(a). The solution x(t), respectively, exhibits 
unpredictable oscillations of differences Axp(N) from its starting value at P, showing 
clear signs of being infinitely sheeted, see figure 8(b).  

Finally, we mention here one example of a Hamiltonian system 

1 
2 2  

H = +  ?x-+ .- $2(1+ E,  cos.wt)+-- E2XCOS wt (4.11) 

with only square-root singularities, whose integrability properties can be detected using 
the methods described in this paper. First of all, it is important to note that the equation 
of motion associated with (4.1 1) 

(4.12) 
1 
x3 

x= -x(l + E,  cos wt) +-+ E? cos wt 

can be exactly solved for E, = E ~ = O  to yield 

xo(t)=[E+(E2-1)”2sin2(t-to)]1’2 (4.13) 

where the two free constants are to and E, the value of the Hamiltonian, or energy 
integral of the problem. The singularities of these solutions occur at xo(tF)) =0, i.e. at 
all t = f:) where 

E+(& 1)’”sin [2(tik)-to)]=0. (4.14) 

This gives an infinite row of complex conjugate pairs, t$’, located at a distance n 
from each other along the Re t axis. 

Just as in the case of (4.1) with ~ = 6 = 0 ,  cf. (4.2), the solution (4.13) is globarly 
finitely sheeted and ~possesses, near its singularities, an expansion of the (4.4) type. 
However, when c1 #O and/or E ~ # O ,  all powers of 2’’’ enter in these expansions,and 
the solutions are expressed by Series of the form (4.10). 
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Now, as the and .z2 time-dependent terms are allowed to drive the motion and 
the Hamiltonian ceases to be a conserved quantity, one expects that the system will 
become non-integrable and chaotic orbits will be observed on a surface of section 

(4.15) 

fOEW. However, when (4.12) was integrated in real time, with E ~ # O  (and E , = O )  and 
several initial conditions x(fo), *(to), no large-scale chaotic region was observed at first, 
even at c2 values as large as c2=4.0. 

Another surprise was in store for us, when we put e2=0 and took E, #O in (4.11): 
Regular orbits were seen to exist everywhere on (4.15) and no chaotic behaviour was 
found, no matter how large the value of E, we tried! So, what is going on here? Can 
the Hamiltonian (4.11) be integrable for all E L  and EZ? 

The answer to this question is suggested, by singularity analysis, in the following 
way: integrating the equation of motion (4.1 1) around one conjugate pair of singularit- 
ies one always finds FSS, as in our earlier investigations of Hamiltonian systems [ 11, 121. 
However, when integrating around two singularity pairs, very different results are 
obtained for the cases EZ=O and sZ#O: 

The case EZ= 0 is characterized by FSS for all E L ,  exhibiting only the original four 
singularities of the primary sheet and returning to the starting values of the solutions. 
at some point P on the contour, after only a finite number of turns. On the other hand, 
if E ~ # O ,  a very complicated pattern of singularities emerges within the contour and the 
differences of the solutions from their starting values at P after N turns, A x p ( N ) ,  
oscillate chaotically away from zero, showing clear evidence of ISS, similar to what is 
depicted in figure 8(b).  

These results suggest that the s2=O case of (4.11) is integrable, whereas the s2#0 
is not. Retuming then to our computations of orbits in real time, we discovered that 
for .c2 big enough (~~24.0) large-scale chaos does eventually occur on the surface of 
section (4.15), demonstrating that the system is non-integrable in that case. 

And what about the E ~ =  0 case, which, according to our singularity analysis, should 
be integrable? Remarkably enough, this system does indeed possess an integral of the 
motion, which is an analytic single-valued function of x, i and f :  

} 2n zc'= X ( t k ) ,  i ( f k ) ,  rk=k-+tO,kEz  I w 

2 

I =  i(p2- px)z+P=constant 
2 2  

p( t )  being a solution of Mathieu's equation, p +  (1 + & I  cos w f ) p = O ,  as discovered by 
Lewis and Leach 1241, in their investigations of integrable time-dependent Hamiltonian 
systems. 

5. Discussion and concluding remarks 

Undoubtedly, the distinction between integrability and non-integrability of dynamical 
systems has received and will continue to receive a lot of attention in the scientific 
literature. Although it is very often related to the possible existence of chaos in a 
physical system, it remains primarily a mathematical question since, as is well known, 
there are many non-infegrable systems, whose orbits are perfectly regular and exhibit 



Non-integrability of Dugg-uan der Pol oscillators 6941 

no chaotic bebaviour anywhere in their phase space (e.g. in the presence of a globally 
attracting k e d  point!). 

Now, there exists, to date, a considerable amount of literature which suggests that 
the integrability of a dynamical system is closely connected to the mathematical simplic- 
ity of its solutions as functions of time and initial conditions. But what does mathemati- 
cal simplicity mean in this context and-how can it be quantified? 

The singularity analysis of the solutions of a dynamical system in complex time offers 
a possible answer to this question: essentially, the main idea is that simple functions are 
those which are single-valued (except for isolated poles), or have a globally h i t e  sheeted 
structure, whereas complicated functions are infinitely sheeted with a complicated pat- 
tem of singularities in the complex t-plane. 

Rigorous results on the question of integrability have been proved so far in two 
cases: when the solutions have only poles (the Painlev(: property) and when they have 
infinitely branched singularities, i.e. contain terms of the form ( t  - t*)’, with A irrational 
or complex, in their series expansions near a singularity t = t ,  [l-81. 

In this paper, we continued our investigation of the intermediate case of algebraic 
singularities [ 11, 121, in which the solutions of a dynamical system contain only powers 
of ( t  - f,)P’q (p/q=rational) and hence are locally finitely branched and 6nitely sheeted. 
In particular, we considered several examples of physical interest, with only square- 
root singularities (i.e. powers of ( t  - t*)’” in their series expancons) and studied numeri- 
cally their analytic structure in integrable and non-integrable cases. 

Our main result, in agreement with earlier studies, is that it is possible for such 
systems to exhibit infiiitely sheeted solutiom (the ISS property) when integrated along 
large enough contours containing a. sufficient number of singularities. The main equation 
studied in this paper describes a three-parameter family of Duffing-van der Pol oscilla- 
tors (DVP), equation (1.1). 

One starts by integrating numerically in the complex t-plane around closed contours, 
 which enclose at least one singularity of the primary sheet of the solution, near t=O. 
If the contour is relatively short, only a small number of singularities will be observed, 
arising on different sheets and the solution will retum to its original value, at some 
point P of the contour, after a finite number of tuns   fini finite sheeted solutions). 
However, as the contour is increased beyond a certain critical size, which encompasses 
one crucial singularity of the solution, a dramatic change occurs : new singularities keep 
appearing, at every tum, whose branching does not allow the solution to return to its 
original value, thus providing strong evidence of ISS. 

If the system is integrable, however, no such change occurs. The solutions are always 
seen to return, exactly, within the accuracy of our computations (10-’1-10-14), to their 
initial values no matter how large the contour and how many singularities are enclosed 
within it. 

Thus, we propose tliat the ISS property is a necessary condition for non-integrability. 
We also suggest that looking for ISS or FSS in complex time, may be a use@ method 
for identifjing integrable cases, in multidimensional or other systems, which are too 
difficult or too costly to analyse by real-time techniques. In many cases, we have also 
found that certain ISS phenomena (like the density of singularity patterns or the magni- 
tude of the differences of the solutions from their initial values) increase significantly 
as a nonlinearity or forcing parameter is increased and the motion becomes more chaotic 
in real time. 

Clearly, OUT approach so far has been primarily numerical. This is partly justified 
by the fact that our investigations concern global properties of solutions which are very 
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dficult to determine by analytical techniques. Further work is needed, of course, to 
rigorously validate ow kdings. 

We believe that such work is worth pursuing, as it is expected to enable us to 
improve our understanding of (non-)integrability and iind new relationships between 
the real time motion of a dynamical system and the mathematical properties of its 
solutions in complex time. 
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